# Arithmetic Expression Geometry: Five Possibilities

Mingli Yuan

October 16, 2025

#### Table of Contents

- 1 Foreword: A few small, colorful stones
- 2 Ochre: The red stone of beginnings
- 3 Lapis: The blue stone of unity
- 4 Malachite: The green stone of renewal
- **5** Quartz: The white stone of clarity
- 6 Obsidian: The black stone of depth
- **7** Final Thoughts

#### Foreword: A few small, colorful stones

Over the past ten years of exploration, I've collected a few small, colorful stones.

Each one sparked my curiosity, and together they have carried me to where I am today.

The stones are not answers, but invitations — to keep exploring, to keep asking, and to enjoy the process.

Asking the right questions is often more important than finding the right answers, especially in the AI era.



Ochre: The red stone of beginnings

## From Non-commutativity to Complexity

How does non-commutativity lead to complexity, and how can we geometrize it?

# Regularity of word2vec

#### A well-known example is word2vec:

- Parallelism encodes semantic analogy: concepts are points, relations are vectors.
- However, this regularity is not fully or rigorously enforced in word2vec. What happens if we enforce it strictly?

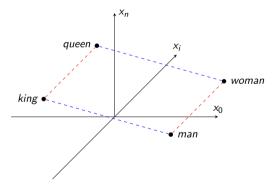
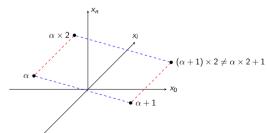


Figure: Regularity in word2vec

#### The case of numbers

$$(\alpha+1)\times 2\neq \alpha\times 2+1$$

- First-class elements: numbers (points), operations (generators), and relationships (operation sequences/paths) are modeled explicitly.
- Regularity strictly enforced: the same operation sequence induces the same geometric displacement; different orders encode different relationships.
- Both "relationship" and "concept" are treated as first-class, fully consistent with this regularity.



#### Explosion of symbolic combinations

- Once non-commutativity is introduced, the number of distinct operation strings grows exponentially.
- Generation trees visualize this explosion: greater depth leads to a combinatorial surge in distinct expressions.
- Intuition: branching factor > 1 implies exponential growth.

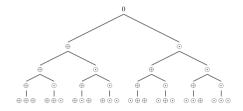


Figure: Tree expansion of possible generation sequences

#### From symbols to geometry: hyperbolicity and volume

- Assume each operation sequence maps to a point in a geometric space, and that balls of radius  $\delta$  have uniformly positive volume.
- Then the symbolic explosion caused by non-commutativity corresponds to exponential growth of volume.
- Hyperbolic spaces exemplify this behavior:

$$\operatorname{Vol}(B_r) \sim e^{(n-1)r}$$

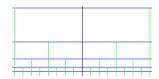


Figure: Non-parallelogram ⇒ hyperbolicity



Figure: A hyperbolic tessellation



#### Contrast: the linear/commutative case

- If operations commute or are constrained by linearity, the parallelogram law holds.
- The parallelogram law simplifies the generation process and mitigates the explosion of symbolic combinations.
- Euclidean ball volume:  $Vol(B_r) \propto r^n$  (polynomial in r).



Figure: Parallelogram law ⇒ Euclidean linearity

## Conclusion: complexity as a geometric volume

#### We have shown that:

- Commutativity implies the parallelogram law and Euclidean linearity.
- In the commutative (linear) case, volumes grow polynomially: Euclidean space.
- Non-commutativity breaks the parallelogram law, yielding exponential growth: hyperbolic space.

More broadly, geometric volume captures the complexity of operation sequences.

Lapis: The blue stone of unity

## Where Computation, Geometry, and Analysis Meet

Is there a unified framework that brings computation, geometry, and analysis together?

#### The $\mathfrak{E}_1$ Space: A Perfect Example

In the  $\mathfrak{E}_1$  space, computation, geometry, and analysis coincide:

#### Computational Aspect

The assignment a = -x/y encodes arithmetic expressions as a geometric flow.

#### Geometric Aspect

The space has a hyperbolic metric  $ds^2 = \frac{1}{y^2} (\frac{dx^2}{\mu^2} + \frac{dy^2}{\lambda^2})$ .

#### Analytic Aspect

The assignment satisfies the flow equation:

$$\frac{da}{ds} = \mu \cos \theta + \lambda a \sin \theta$$

This triad suggests that AEG can serve as a Rosetta Stone for translating among these domains.

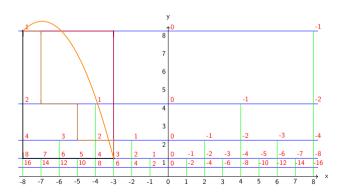


# Encoding thread-like expressions as paths

• Black path:  $1 \times 8 - 5 = 3$ 

• Purple path:  $\left(1 - \frac{5}{8}\right) \times 8 = 3$ 

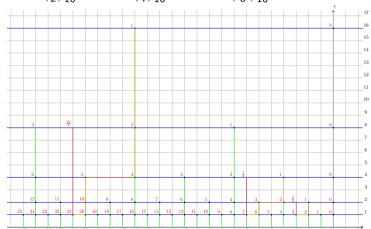
• Orange path: an example integral curve



# Binary numeral as flow

#### Examples:

$$\left(\frac{3}{2}\right)_{10}=1.1_2,\ \left(\frac{7}{4}\right)_{10}=1.11_2,\ \left(\frac{21}{8}\right)_{10}=10.101_2.$$



# Which complexity does volume measure?

It is well known that time and space complexity can trade off against one another.

- Time complexity: number of operations (steps)
- Space complexity: memory usage (intermediate results)

This trade-off suggests a common source of complexity. Which notion of complexity does geometric volume quantify?

#### Arithmetic torsion

Non-commutativity leads to arithmetic torsion, which measures the discrepancy between different operation orders. We often denote torsions as  $\tau(p)$  where p is a path.

 $\tau$  for two operations:

$$au$$
 for three operations:

$$(x+1)\times 2-(x\times 2+1)=1$$

$$((x+1)\times 2+3)-((x+3)\times 2+1)=-2$$

#### Arithmetic torsion at scale

As the step size increases:

For a single step:

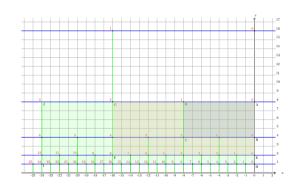
$$(x+1) \times 2 - (x \times 2 + 1) = 1$$
 (1)

For two steps:

$$(x+2) \times 4 - (x \times 4 + 2) = 6$$
 (2)

For three steps, the pattern continues:

$$(x+3) \times 8 - (x \times 8 + 3) = 21$$
 (3)



#### Arithmetic torsion and curvature in action

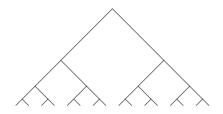


Figure: smaller torsion

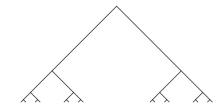


Figure: larger torsion

# Grids and Cayley graphs

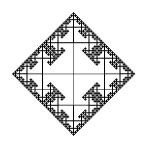


Figure: Free group  $\langle a, b \rangle$ 

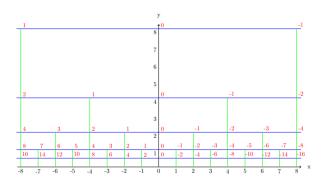
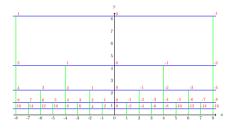
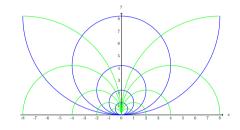


Figure: Baumslag–Solitar group  $< a, b|bab^{-1} = a^2 >$ 

# One space, two grids and conformal map





$$z\mapsto -rac{1}{z}$$

## Can One Hear the Shape of a Drum?

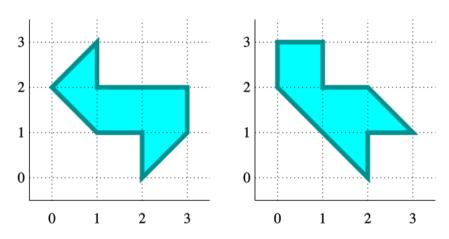


Figure: Isospectral drums

# Eigenfunction of the Laplacian

In this setting,  $A = \frac{1}{\mu y}$  and  $B = \frac{1}{\lambda y}$ :

$$\Delta f = y^2 \left( \mu^2 \frac{\partial^2 f}{\partial x^2} + \lambda^2 \frac{\partial^2 f}{\partial y^2} \right)$$

For  $f = -\frac{x}{v}$ , it follows that

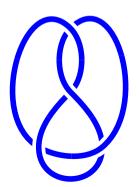
$$\Delta f = -\frac{2\lambda^2 x}{y} = 2\lambda^2 f$$

Therefore,  $f = -\frac{x}{y}$  is an eigenfunction of the Laplacian with eigenvalue  $2\lambda^2$ .

## Knot 4<sub>1</sub> and its Alexander polynomial

The knot group of the figure-eight knot  $(4_1)$  has the presentation:

- Generators: a, b
- Relator: abbbaBAAB = 1 (where  $A = a^{-1}, B = b^{-1}$ )
- Alexander polynomial:  $\Delta(t) = t^2 3t + 1$



#### From the relator to its Alexander polynomial

$$x = a(b(b(b(a(B(A(A(B(x)))))))))$$

$$= a(b(b(b(a(B(A(A(x-1)))))))))$$

$$= a(b(b(b(a(B(A((x-1)t^{-1})))))))$$

$$= a(b(b(b(a(B((x-1)t^{-2}))))))$$

$$= \cdots$$

$$= x - (t^2 - 3t + 1)$$

$$x - (t^2 - 3t + 1) = x$$

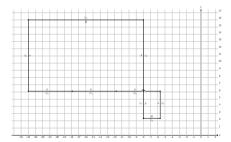
This forces the condition  $t^2 - 3t + 1 = 0$ 

# When the Alexander polynomial meets the cyclotomic polynomial

Cyclotomic polynomials appear in the global arithmetic torsion of the AEG path;

$$au(p) = rac{-\Delta_{4_1}(a)(a^2-1)}{a^2}$$

.



#### Conclusion: richness from the unified perspective

#### We have shown that:

- Arithmetic expressions can be encoded as geometric flows in the hyperbolic model  $\mathfrak{E}_1$ ; the assignment a=-x/y links computation, geometry, and analysis via the flow equation.
- Non-commutativity manifests as arithmetic torsion that scales with step size and organizes paths; analytic structure appears through Laplacian eigenfunctions.
- Algebraic invariants such as Alexander and cyclotomic polynomials govern path closure and global torsion, revealing a deep interface between topology and arithmetic.

# Malachite: The green stone of renewal

#### A Neo-Calculus?

Can we develop a new calculus that naturally handles mixed operations?

#### How to describe a change over time?

Two complementary ways to describe a small change over time:

- by quantity: add a near-zero amount
- by ratio: multiply by a near-unit factor

Traditional calculus is based on the first method; the Riemann integral is additive. The functions exp and log convert between these two viewpoints.

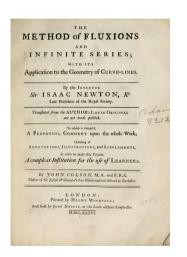


Figure: Method of Fluxions

#### Product integration



Figure: Vito Volterra

Matrix-valued non-commutative differentiation and integration, left and right

• 
$$\frac{d}{dx}A(x) = \lim_{\Delta x \to 0} \frac{A(x+\Delta x)A^{-1}(x)-I}{\Delta x}$$

• 
$$A(x)\frac{d}{dx} = \lim_{\Delta x \to 0} \frac{A^{-1}(x)A(x+\Delta x)-I}{\Delta x}$$

• 
$$\prod_{a}^{b} (I + A(x)dx) = \lim_{\nu(P) \to 0} \prod_{i=m}^{1} (I + A(\xi_i))$$

• 
$$(I + A(x)dx) \prod_{a}^{b} = \lim_{\nu(P) \to 0} \prod_{i=1}^{m} (I + A(\xi_{i}))$$

An identity connects product integration with standard additive integration:

$$\prod_{a}^{b}(I+A(x)\,dx)=I+\int_{a}^{b}A(x)\,dx+\int_{a}^{b}\int_{a}^{x}A(x)A(y)\,dy\,dx+\cdots$$

# How about mixing up additive and multiplicative steps?

Additive calculus provides a closed algebra of polynomials under differential and integral operators.

- $\frac{d}{dx}p(x) = q(x)$
- $\int p(x) dx = q(x) + C$

This underlies power series, Laurent series, and approximation theory.

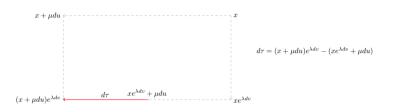
Problem: How do we mix additive and multiplicative steps in a single process?

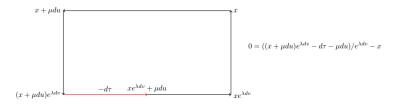
#### Directions:

- We need to handle functions beyond constants in arithmetic expressions.
- We need to expand polynomials into another closed set under differential and integral operators.



## Recap: arithmetic torsion and area



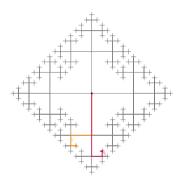


## A picture: torsion is "tearing" from the flat



This "tearing" is a geometric manifestation of non-commutativity; while the flat is just the ACS plane.

# Accumulated commutative space (ACS)



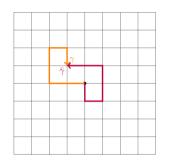


Figure: An abstract hyperbolic space

Figure: ACS space

In ACS, a path  $\gamma$  and its reversal  $\bar{\gamma}$  always meet. ACS can be (u, v)-parameterized in which du and dv can be interpreted as addition and multiplication with weights  $e^v$ .

Consider  $(u, v, a) \in \mathbb{R}^3$  with constants  $\mu, \lambda$ .

$$\omega := \mu \, du + \lambda a \, dv, \qquad \alpha := da - \omega$$

Key properties:

Contact:

$$d\omega = \lambda\,da\wedge dv,\quad d\alpha = -d\omega,\quad \alpha\wedge d\alpha = \mu\lambda\,du\wedge da\wedge dv \neq 0$$
 so  $\alpha$  is a contact form when  $\mu\lambda \neq 0$ .

• Reeb field and distribution:

$$R = -(1/\mu) \partial_u, \qquad \mathcal{H} := \ker \alpha$$

Horizontal lifts (basis of H):

$$D_u := \partial_u + \mu \, \partial_a, \qquad D_v := \partial_v + \lambda a \, \partial_a, \qquad \alpha(D_u) = \alpha(D_v) = 0$$

• Natural units: with  $\tilde{u} = \mu u$ ,  $\tilde{v} = \lambda v$ ,

$$\alpha = da - d\tilde{u} - a d\tilde{v}$$



#### Calculus over the contact structure: I

The expression differential  $\delta$  is defined by

$$\delta a = \omega, \qquad \delta u = du, \qquad \delta v = dv,$$

and for any F(u, v, a)

$$\delta F = dF - (\partial_a F) \alpha = (D_u F) du + (D_v F) dv,$$

where

$$D_u F = F_u + \mu F_a$$
,  $D_v F = F_v + \lambda a F_a$ ,  $D_\theta = \cos \theta D_u + \sin \theta D_v$ .

Chain rules:

$$\delta \Phi(a) = \Phi'(a) \omega, \qquad \delta F(E_1, E_2) = \partial_1 F \delta E_1 + \partial_2 F \delta E_2.$$



Curvature and non-commutativity:

$$[D_u, D_v] = \mu \lambda \, \partial_a, \qquad \delta^2 F = \mu \lambda (\partial_a F) \, du \wedge dv, \qquad \delta^2 a = \mu \lambda \, du \wedge dv.$$

Compatibility and circulation:

$$(d\omega)^*|_{\alpha=0} = \mu\lambda \, du \wedge dv, \qquad \oint_{\partial\Sigma} \omega = \iint_{\Sigma} d\omega = \mu\lambda \iint_{\Sigma} du \wedge dv.$$

Quick rules:

$$\delta(a^n) = na^{n-1}\omega, \quad \delta(\ln a) = \frac{\omega}{a}, \quad \delta(e^a) = e^a\omega, \quad \delta(\sin a) = \cos a\omega, \quad \delta(\cos a) = -\sin a\omega.$$

Rectification and flow:

$$y = \arcsin\left(\frac{\lambda a}{\mu}\right), \quad \|\nabla y\| = \lambda, \quad \frac{da}{ds} = D_{\theta} a = \mu \cos \theta + \lambda a \sin \theta.$$



# Extending polynomials: the affine–Appell basis

Natural units:  $\tilde{u} = \mu u$ ,  $\tilde{v} = \lambda v$ . Define scaled powers

$$B_n(a, v) := e^{-n\tilde{v}}a^n \quad (n \in \mathbb{N}).$$

Let

$$\mathcal{B}:=\Big\{\sum_{n=0}^N P_n(u,v,e^{\tilde{v}})\,B_n(a,v) \text{ (finite)}\Big\}.$$

**Closure Theorem.**  $\mathcal{B}$  is closed under the mixed calculus generated by

$$D_{\it u} = \partial_{\it u} + \mu \, \partial_{\it a}, \qquad D_{\it v} = \partial_{\it v} + \lambda {\it a} \, \partial_{\it a}.$$

Rules:

$$D_u(PB_n) = (\partial_u P)B_n + \mu n e^{-\tilde{\nu}} P B_{n-1}, \quad D_v(PB_n) = (\partial_v P)B_n.$$



### Antiderivatives and a finite upward sweep

If P is independent of u,

$$D_u^{-1}(P(v,e^{\tilde{v}})\,B_n)=\frac{e^{\tilde{v}}P(v,e^{\tilde{v}})}{\mu(n+1)}\,B_{n+1}.$$

In general, define  $Q_n^{(0)}=rac{e^{ ilde{v}}}{u(n+1)}P_n$  and set  $G^{(0)}=\sum_n Q_n^{(0)}B_{n+1}$ . Then

 $F - D_u G^{(0)} = -\sum_n (\partial_u Q_n^{(0)}) B_{n+1}$ . Repeat for finitely many steps.

**Example.** For  $F = a^3 e^{\lambda v} = e^{4\tilde{v}} B_3$ ,

$$D_u^{-1}F = rac{e^{ ilde{
u}}}{4\mu}B_4 = rac{e^{\lambda 
u}}{4\mu}a^4, \quad D_uigg(rac{e^{\lambda 
u}}{4\mu}a^4igg) = a^3e^{\lambda 
u}.$$

### Conclusion: a new calculus for mixed operations

#### We have shown that:

- Mixed additive/multiplicative change admits a contact geometry on (u, v, a) with  $\alpha = da \omega$ ,  $\omega = \mu \, du + \lambda a \, dv$ ;  $\mathcal{H} = \ker \alpha$  has basis  $\{D_u, D_v\}$  and  $\alpha$  is contact for  $\mu \lambda \neq 0$ .
- The expression differential  $\delta$  projects d to ker  $\alpha$ :  $\delta F = dF (\partial_a F)\alpha$ , with chain rules and directional synthesis via  $D_\theta$ .
- Non-commutativity/curvature are encoded by  $[D_u, D_v] = \mu \lambda \partial_a$  and  $\delta^2 F = \mu \lambda (\partial_a F) du \wedge dv$ ; circulation-area and de Rham compatibility hold.
- Legendrian flow obeys  $\frac{da}{ds} = \mu \cos \theta + \lambda a \sin \theta$ ; rectification  $y = \arcsin(\lambda a/\mu)$  yields  $\|\nabla y\| = \lambda$  and stabilizes numerics; natural units  $(\tilde{u}, \tilde{v})$  simplify formulas.
- An affine–Appell basis  $B_n(a, v) = e^{-n\tilde{v}}a^n$  is closed under  $D_u, D_v$ , enabling explicit differentiation/integration and constructive antiderivatives for mixed expressions.



Quartz: The white stone of clarity

# A New Atlas for Complex Analysis?

Is complex analysis a special case of a more general theory?

### Why are complex numbers necessary here?

This stems from the fact that multiplication by -1 is involutive, i.e.,  $(-1)^2 = 1$ . We therefore need an infinitesimal generator that connects -1 and 1 continuously.

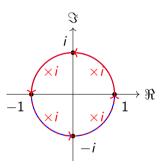


Figure: *i* as a generator: multiplication by *i* rotates by 90°, so  $1 \xrightarrow{\times i} i \xrightarrow{\times i} -1$ .

# Setup (over $\mathbb{C}$ ): contact structure and affine–Appell chart

**Complexification rule.** Coordinates  $(u, v) \in \mathbb{R}^2$ ; values and parameters  $a, \mu, \lambda \in \mathbb{C}$ . All operators act  $\mathbb{C}$ -linearly.

#### Contact data and horizontal fields

$$\omega := \mu \, du + \lambda a \, dv, \qquad \alpha := da - \omega,$$
 
$$D_u := \partial_u + \mu \, \partial_a, \qquad D_v := \partial_v + \lambda a \, \partial_a, \qquad \delta F = (D_u F) \, du + (D_v F) \, dv.$$

#### Natural units and affine-Appell coordinate

$$\tilde{u} := \mu u, \quad \tilde{v} := \lambda v, \qquad s := a e^{-\tilde{v}} \ \Rightarrow \ D_v s = 0, \ D_u s = \mu e^{-\tilde{v}}.$$

We write  $B_n := s^n$   $(n \in \mathbb{N})$  and use an EL-closed coefficient ring  $\mathcal{R}_{\mathrm{EL}}$  generated by  $u, v, e^{\pm \tilde{v}}$  and closed under  $+, \times, \partial_u, \partial_v, \exp$ , log (where defined).



# Definition and intuition: AEG–Cauchy–Riemann over $\mathbb C$

**Arithmetic-holomorphic (over**  $\mathbb{C}$ ). For h = f + ig with  $f, g : (u, v, a) \mapsto \mathbb{R}$ , define

$$ar{D} := rac{1}{2} \left( D_u + i D_v 
ight), \qquad \mathsf{AEG} ext{-holomorphic} \iff ar{D} h = 0.$$

Equivalently, the AEG-CR equations

$$D_u f = D_v g, \qquad D_v f = -D_u g. \tag{16}$$

#### Geometric consequences.

- Conformality and equal norms:  $(D_u f, D_u g) \perp (D_v f, D_v g)$  and  $(D_u f)^2 + (D_u g)^2 = (D_v f)^2 + (D_v g)^2$ .
- Classical limit: if f, g are independent of a, then  $D_u = \partial_u$ ,  $D_v = \partial_v$ , yielding the usual CR equations on (u, v).
- Rigidity: if f = f(a) and g = g(a), the only solutions are constants.



## AEG-Weierstrass expansion in the affine-Appell chart

Theorem (local expansion and uniqueness). Let h=f+ig be  $C^1$  on a neighborhood and satisfy  $\bar{D}h=0$ . Then there exist unique coefficients  $A_n(u,v)\in\mathcal{R}_{\mathrm{EL}}$  (real-analytic in (u,v)) such that

$$h(u, v, a) = \sum_{n \geq 0} A_n(u, v) s^n, \qquad s = a e^{-\tilde{v}}.$$

The coefficients obey the triangular recursion

$$\frac{\mu}{2} e^{-\tilde{v}} (m+1) A_{m+1}(u,v) + \partial_{\bar{\zeta}} A_m(u,v) = 0, \quad \partial_{\bar{\zeta}} := \frac{1}{2} (\partial_u + i \partial_v).$$

Conversely, any convergent series with this recursion solves  $\bar{D}h = 0$ . **Meromorphic extension.** Allowing a finite principal part  $h = \sum_{n \geq N} A_n s^n$   $(N \in \mathbb{Z})$  yields AEG-meromorphic functions (poles at s = 0).

# Symbolic calculus and closure (computable rules)

For  $F = \sum_{n>0} A_n s^n$ :

$$D_u F = \sum (\partial_u A_n) s^n + \mu e^{-\tilde{v}} \sum_{n \geq 1} n A_n s^{n-1}, \qquad D_v F = \sum (\partial_v A_n) s^n.$$

**Indefinite integration along** *u***.** Find  $G = \sum B_n s^n$  with  $D_u G = F$ :

$$B_0$$
 free,  $B_{k+1} = rac{A_k - \partial_u B_k}{\mu e^{-\tilde{v}}(k+1)}$   $(k \ge 0)$ .

#### Algebraic closure.

- Closed under addition and the "AEG complex product"  $(f,g)\odot(\tilde{f},\tilde{g})=(\tilde{f}f-g\tilde{g},\ f\tilde{g}+\tilde{f}g).$
- Composition with a classical holomorphic function of  $\zeta = u + iv$  preserves AEG-holomorphicity.
- Laurent series in s implement the AEG-meromorphic class (residues at s=0).



# Conformality, curvature density, and fiberwise complex analysis

Write 
$$F = (f, g)$$
 and  $|F'|^2 := (D_u f)^2 + (D_u g)^2 = (D_v f)^2 + (D_v g)^2$ . Then 
$$d\omega = \frac{\mu \lambda}{|F'|^2} df \wedge dg. \tag{17}$$

The area density rescales by the Jacobian  $|F'|^{-2}$ , while the total integral  $\int d\omega$  is invariant (expression-conformal coordinates).

**Fiberwise complex analysis in** s. Fix (u, v); then  $s \in \mathbb{C}$  and  $h(\cdot) = \sum A_n s^n$  is holomorphic in s. Hence the classical Cauchy machinery applies fiberwise:

$$h(s_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{h(s)}{s - s_0} ds, \qquad \oint_{\gamma} h(s) ds = 2\pi i \cdot A_{-1}(u, v),$$

for any loop  $\gamma$  encircling  $s_0$  (or 0 for the residue statement).



**Constructor (seed**  $\Rightarrow$  **AEG-holomorphic).** Pick any real-analytic seed  $A_0(u, v)$ ; define recursively

$$A_{m+1}(u,v) = -\frac{2 e^{\overline{v}}}{\mu (m+1)} \partial_{\overline{\zeta}} A_m(u,v), \qquad m \geq 0,$$

and set  $h = \sum_{n \geq 0} A_n s^n$  with  $s = a e^{-\tilde{v}}$ . Then  $\bar{D}h = 0$ . If  $A_0$  is classical holomorphic in  $\zeta$ , all higher  $A_{n \geq 1}$  vanish (classical limit).

**Explicit nontrivial example.** Take  $A_0(\zeta, \bar{\zeta}) = \bar{\zeta}$ ; then

$$A_1 = -\frac{2}{\mu}e^{\tilde{v}}, \quad A_2 = \frac{i\lambda}{\mu^2}e^{2\tilde{v}}, \quad A_3 = \frac{2\lambda^2}{3\mu^3}e^{3\tilde{v}}, \dots$$

so

$$h(u, v, a) = \bar{\zeta} - \frac{2}{\mu} a + \frac{i\lambda}{\mu^2} a^2 + \frac{2\lambda^2}{3\mu^3} a^3 + \cdots$$

is AEG-holomorphic (convergent in a neighborhood controlled by |a| and the majorant of  $A_0$ ).



### Conclusion: A new context for holomorphic and analytic functions

#### We have shown that:

- AEG–Cauchy–Riemann:  $\bar{D} = \frac{1}{2}(D_u + iD_v)$ , with  $\bar{D}h = 0$  defining arithmetic holomorphicity; conformality and the classical limit are recovered, while rigidity appears for functions depending only on a.
- AEG–Weierstrass expansion: any local AEG–holomorphic h admits  $h = \sum_{n \geq 0} A_n(u, v) s^n$  with triangular recursion; Laurent series in s yield meromorphic extensions.
- Computation rules: explicit formulas for  $D_u$ ,  $D_v$  on series and a constructive scheme for indefinite integration along u; closure under the AEG complex product and composition with classical holomorphic maps in  $\zeta = u + iv$ .
- Geometry and analysis align:  $d\omega = \frac{\mu\lambda}{|F'|^2} df \wedge dg$  encodes conformal area density; fiberwise in s, classical Cauchy integral and residue calculus apply.

# Obsidian: The black stone of depth

# A Key to the Nonlinear Maze?

Can AEG help us navigate the complexities of nonlinear systems?

## Why is this possible?

- The multiplicative dimension of AEG inherently encodes nonlinearity.
- The non-commutativity of operations is native to the AEG framework.
- A spatiotemporal view of complexity clarifies slow and fast variables in a synergetics setting.

In what follows, we show that AEG's Accumulative Commutative Space (ACS) functions as a minimalist RG flow.

#### ACS and RG: commutative coordinates and scale

• Accumulative Commutative Space (ACS) assigns to any arithmetic path  $\gamma$  the coordinates

$$A_{\gamma} = \sum_{k} \mu_{k}, \qquad M_{\gamma} = \sum_{k} \lambda_{k},$$

where  $\mu_k$  (additive) and  $\lambda_k$  (log-multiplicative) are the operation parameters along  $\gamma$ .

- Interpretation:
  - A captures the *net additive load* accumulated by the computation.
  - *M* encodes the *evolutionary scale* (log-scale) accumulated by multiplicative steps.
- Minimal RG perspective: varying *M* probes effective dynamics (driven by addition and local flows) at different scales. ACS provides a commutative plane to compare paths across scales.

# Example I: Percolation RG $(R(p) = 3p^2 - 2p^3)$

- Polynomial form  $R(p) = Yp^N + Xp^{N-1}$  with (X, Y, N) = (3, -2, 3).
- ACS coordinates (canonical AEG path):

$$A_R = X + Y = 1,$$
  $M_R(p) = (N-1) \ln p = 2 \ln p.$ 

Fixed points in ACS:

$$p^* = 0$$
:  $(A = 1, M \to -\infty)$ ,  $p^* = \frac{1}{2}$ :  $(A = 1, M = -2 \ln 2)$ ,  $p^* = 1$ :  $(A = 1, M = 0)$ .

• A torsion instance (path-dependent)  $T_R(p) = -\ln p (8p^{-1} + 3)$  illustrates finite, nonzero torsion at the critical point and vanishing torsion at p = 1.



# Example II: Logistic map (R(x) = rx(1 - x), r = 3.2)

- $R(x) = (-r)x^2 + (r)x$  with N = 2, coefficients  $(c_2, c_1, c_0) = (-r, r, 0)$ .
- ACS coordinates (Horner path):

$$A_R(r) = r,$$
  $M_R(x) = 2 \ln x.$ 

• Stable 2-cycle at r = 3.2:  $x_a \approx 0.513045$ ,  $x_b \approx 0.799455$ .

$$M_R(x_a) \approx -1.3348$$
,  $M_R(x_b) \approx -0.4476$ .

• Second iterate  $R^{(2)}$ :  $A_{R^{(2)}} = r^3 = 32.768$ ,  $M_{R^{(2)}}(x) = 4 \ln x$ . The points  $x_a, x_b$  are fixed points of  $R^{(2)}$ , reflecting a deeper scale M.



# Takeaways: ACS as a minimalist RG flow

- ACS provides (A, M) coordinates that separate dynamical content (addition) from evolutionary scale (multiplication).
- The AEG flow encodes scale dependence directly via  $\lambda a$ , with M acting as evolutionary time; varying M reveals effective behavior at different scales.
- Arithmetic torsion integrates scale  $(e^M)$  into a geometric invariant, yielding phase-sensitive signatures and principled path comparisons.
- Across examples (percolation, logistic), fixed points and cycles appear as specific loci in ACS; *M* quantifies scale while *A* captures net additive load.

## Final Thoughts

We've journeyed through five possibilities, each a "small, colorful stone" representing a different facet of Arithmetic Expression Geometry.

- **Ochre:** Non-commutativity implies exponential complexity, geometrically realized by the volume of hyperbolic space.
- Lapis: A unified framework where computation, geometry, and analysis converge, linking expressions to geometric flows and topological invariants.
- Malachite: A neo-calculus on a contact structure ( $\alpha = da \omega$ ) for mixed additive and multiplicative dynamics.
- Quartz: A generalization of complex analysis to an "arithmetic-holomorphic" framework where  $\bar{D}h = 0$ .
- **Obsidian:** A minimalist, RG-like flow via Accumulative Commutative Space (ACS) to analyze scale in non-linear systems.

These five stones suggest that the geometry of arithmetic offers a new language, unifying our understanding of complexity, analysis, and dynamics.



## Acknowledgments

#### We thank

- discussions with Yue Chen, Yangzhou Liu and Bing Yuan;
- vast contributions by ChatGPT and Gemini AI;
- support from my family and friends over the years.

# Thanks

Thanks